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ABSTRACT

A transverse degree of freedom is introduced in the Toda lattice. The corresponding continuum

approximations are discussed.

INTROUDUCTION

One of the few integrable discrete systems is the nonlinear spring and mass chain introduced by

Toda [1]. Its integrability was demonstrated by Flaschka (2] and effective analytical technique

based on the spectral transform was developed subsequently [3]. Many theoretical and numerical

studles of perturbed Toda lattices have been reported, see (4] e.g.. Recently, the Toda lattice has

been applied to model the propagation of longitudinal waves along DNA [5]. Solitons were found to

form spontancously at physlological temperatures. In a more realistic model of DNA also

transverse degrees of freedom must be taken into account. Thus a two chain model of DNA was
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treated by statistical mechanics methods in [6] with Morse potentials representing the H-bonds in
the base pairs. Here, as a first step, we formulate the Toda lattice model for one strand with a
transverse degree of freedom. The continuum approximations of the resulting equations and their

solutions are investigated. Computer studies of the lattice dynamics will be presented elsewhere.

FORMULATION OF THE MODEL
We consider a one-dimensional lattice with lattice constant { and N lattice points. At each
lattice point we place identical masses {base pairs), m. The longitudinal and transverse
displacements from the equilibrium positions are given by Yo ¥p o ¥y and Vo Vg Tt Vg
respectively. In the case of a circular arrangement of the N masses (corresponding to a circular

DNA molecule) we get the periodic boundary conditions for the displacements as function of time,

t,
yn+N(t') = yn(")v Vn+N(") = Vn(t)v n= ls 2v "t N . (1)
The elongation (or compression) of the spring conneciing the n'th and (n+1)'th masses is given by
=+ Yy Y+ (- vt - (2)
r, = 0 when the length of the spring is equal to the lattice constant. Note that r, =ry is the
elongation of the spring connecting the 1st and the N'th masses. The Toda potential [1] is given by
V(r,) = % [exp (-br,) + 1} + ar, (3)
where a and b are constants. The Hamiltonian for the Toda chain becomes
N
1 . .
M=) gm(yl+v})+ V() , (4)
n=1
where dot denotes differentiation with respect to 'ime. The dynamical equations become
my_ =-V'(r ) o Vi, ) Pn- (38)
n- n Uy_n' n-1 Hin '
and
mé = -V'(r.) ol -V'(r )or“"' (5b)
n- n U\E n-1 W" ' '

There are two characteristic lengths in the model, ¢ and 1/b, and we shall denote their ratio jJ =
M. Furthermore, we introduce the mass density p = m/¢ A characteristic time is ¢ yp/a.

Parameter values for DNA [5] are given in Table 1.



=34 x1071° mj=0b =21

a=513 x107%N p=m/l=377x10" kg/m
b=6.18 x 100 m™! t/pfa =9.2x 107135

= 1.282 x 1072* kg

Table 1. Parameter values for DNA {5].

It is convenient to introduce the longitudinal and transverse strains

@ uy = (1 -y (62)
and
¢ w, = (vn_H - vn)/l , (6b)

where ¢ is an indicator of smalness. We shall consider asymptotic expansions of Eq. (5) for small
elongations in four cases:

i)  longitudinal strain larger than transverse strain (a =1, v = 2)

ii) longitudinal and transverse strain of same order of magnitude (a = v = 1)

1il) longitudinal strain smaller than transverse strain (a= 2, y = 1)

iv)  longitudinal strain much smaller than transverse strain (a = 3, v = 1).

The resulting equations have the form

alp, _ )
Ry =U, -0 + U (7a)
and
1804
W =W W+ W (7b)
with
~(] - - - 22
Up = (1 -exp(=br ) (1 - ¢ 'w [2) (7c)
and
~ a - -
W, = (1 - exp( br))) w, . (7d)
In the case where not only rn/l <l butalsor b= A rn/l < | we may truncate the Toda
potential to
(br. )2 (br.)?
Vi) 2§ |7 -5 (%)

and arrive at the Boussinesq approximations given in Table 2.



Case a,v U \\Y%

n n

i 1,2 c’un—c“%u: 3/Ziunwn

i 1,1 cﬂun—cz[?ui—gwrﬂ ¢ Junwn

iii 2,1 3 (un + %wﬁ) ¢ ﬁ(un + 2w§) wo

_c4[g;un+p'(l+g)unw:+§(3+ﬂ) w:]

. 2 2 3 3@3
iv 3,1 cgwn+t ﬂun € 5wy

Table 2. Asymptotic expansions of U and W, (Eq. (7)) for small longitudinal

and transverse excitations.

CONTINUUM APPROXIMATIONS
In order to derive continuum approximations for the lattice equations (7-8) we follow Collins

[7] and Rosenau and Hyman [8]. These authors developed ideas by Kruskal and Zabusky (9] and
showed that

-1
T, ,) - 2T(E) + T(E,_ [1 "2 ] T(f) . 9)

Here T is a rnonlinear function of fn(t) -+ f(x,t) with x = nlin the continuum limit n + «, { - 0.
Identifying T(f ) with U, and W in Eq. (7) obtain the following continnum approximations for

the longitudinal and transverse stains, u(x,t) and w(x,t), in the four cases:

) = u, -y, + L, (10a)
§ T E Il'Z m (10b)
i) fuy =B, - ; (1) + G W), + 4 f; Uentt (11a)
8w, = puw) +2& ‘ w (11b)
i)y Qu, =du+ g(w")“ +8 f; - (12a)
¥ 21{2 Wt (12h)



and

iv) Zu =9 +8u +LEu (13a)

»ro

p 2
W, = g (ws)u + g-f-z w (13b)

xxtt
Here we have kept terms of order ¢ and ¢ in Eqgs. (10-12), and terms of orde: ¢, 52, and ¢ in Eq.
(13), and then omitted the ¢'s. In all four cases w(x,t) can be replaced by -w(x,t). The

longitudinal strain, u(x,t), does not have this symmetry property.

ON THE SOLUTIONS
In case j) the longitudinal field and the transverse fields decouple. u(x,t) satisfies (10a) which is
the improved Boussinesq equation [9). In the solitonic limit (of infinite pericdicity interval and

finite velocity) the travelling wave solution to this equation becomes

u(x,t) = -% (82—1) sech? ﬁ@ [x - s\/z;_--t - xo] . (14)

This compressional travels with the supersonic velocity, syfajp (s > 1), yPa/p being the sound
velocity (= 1.69 x 10° m/s for DNA).
Eq. (10b) with the periodicity condition

w(x,t) = w(x+ jL,t) j=1,2 - (15)

when L = N-¢{, has the trivial solution

w(x,t) = cosh [ﬂz-z [x - 1[,‘-]] T(t) (16)
for j = 1. Here T(t) is an arbitrary function of time. Thus the transverse strain is a standing
wave.
In case ii) where the longitudinal and transverse strains are of the same order of magnitude we
investigate the ansatz

w=Au+B or u=w/A-D/A (17a,b)
where A and B are constants. Fqs. (11a) and (11b) become identical if we choose

A=+ /2F7and B = & JTFEF/(14))) . (18a.b)

The resulting equation is

, 2
E"u = - Hﬁ-ﬁ u, + /}(u))“ + ﬁ {-7 - (19a)



or

g .2 ¢
gwl":rf—gtm(w )xx+§ﬁwxxu . (19b)

For infinite periodicity interval we find the travellirg wave solution

u(x,t) = 1%3 [l + % (52—1) sech? @ [x - s,/m)—hp t - xo]] (20a)

or

w(x,t) = % % % (32—1) sech? @ [x - s% t - xo] ) (20b)

The longitudinal solitary wave (20a) differs from the uncoupled solitary wave (14) by being
elongated instead of compressional, by existing as a superposition to the constant elongation
(1+/3)‘1 (like a "dark soliton" in the terminology of optical solitons), ard by having a velocity,
syPa/{T+7)p, which may be smaller than the sound velocity (for 1 < s < 1.024 in the case of DNA
where § = 21). Thus the ansatz (17) that the longitudinal and transverse strains travel together
(with the same velocity) makes this hybrid wave travel slower than thie uncoupled longitudinal
strain wave by a factor yI+7 and faster than the uncoupled transverse strain wave which is a
standing wave with zeru velocity.

In case jii) the transverse strain is again a standing wave (solution to Eq. (12b) which is identica!
to (10b)). This wave acts as a source term in the linear dispersive wave equation (12a) for the
longitudinal strain which can be solved by separation of variables.

In case jv) the wave equation for the longitudinal strain (13a) is identical to Eq. (12a). However,
the transverse strain in the source term is given by the nonliner equation (13b) for which we have

obtained solutions by separation of variables

w(x,t) = x[ﬂ,? x] T[% /i z] . (21)

yielding the differential equations

X" - C = - A(x)" (22a)
and

™= (22)

2,

for the functions X and ‘I'. Here prime Cenotes differentiation with respect to the arguments,



and _l{ v ___Ep:a t, and .\ is the separation constant. Phase plane analvsis of the integrated systems.

A o 2
\('_tflz-x + X +C1 l
T 2
SI\X +1 | (233.)
3AX? 4+ 1
and
| [T 4 1
T = = QTT(T —C2)
(23b)
. _ T3
==

shows blow up for A > 0. (Example: For the integration constants (Cl, C,) = [671T‘ O] we get the

rational solution

X=X

wiet) = ¢/ 2 2 (24) )

For A < 0 bounded solutions to Eq. (13b) are found.

CONCLUSION

For the Toda lattice with a transverse degree of freedom the dynamical equations are derived
for spring elongations, which are small compared to the lattice constant, in cases of different orders
of magnitude of the ratio between the longitudinal field and the transverse field. Continuum
approximation leads to partial differential equations of improved Boussinesq type when the spring
elongation is small also compared to the Toda length parameter (1/b). When the longitudinal field
is small compared to the transverse field the felds decouple into a supersonic longitudinal solitary
wave and a standing transverse wave. When the two fields are of the same order of magnitude a
hybrid wave which may be subsonic is found. (The longitudinal wave then has the character of a
"dark" compressional solitary wave). The stability of the hybrid wave is presently under
investigation. When the transverse field is larger than the longitudinal fielu, we find a standing
transverse wave acting as a source {or linear dispersive longitudinal waves. The standing transverse

wave may be nonlinear and has been found by separation of variables,
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